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STOCHASTIC APPROXIMATION BASED CONSENSUS DYNAMICS
OVER MARKOVIAN NETWORKS∗

MINYI HUANG† , TAO LI‡ , AND JI-FENG ZHANG§

Abstract. This paper considers consensus problems with random networks. A key object of
our analysis is a sequence of stochastic matrices which involve Markovian switches and decreasing
step sizes. We establish ergodicity of the backward products of these stochastic matrices. The
basic technique is to consider the second moment dynamics of an associated Markovian jump linear
system and exploit its two-scale interaction property resulting from the decreasing step sizes. The
mean square convergence rate of the backward products is also obtained. The ergodicity results are
used to prove mean square consensus of stochastic approximation algorithms where agents collect
noisy information. The approach is further applied to a token scheduled averaging model.
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1. Introduction. Consensus algorithms with imperfect information exchange or
randomly perturbed state evolution have been systematically investigated, addressing
many important issues including measurement noise, exogenous perturbations enter-
ing system state dynamics, and the quantization effect [1, 12, 13, 15, 24, 30]. The work
[28] made an early effort introducing stochastic gradient based consensus algorithms.
For noisy modeling of collective motion in multiagent systems, see, e.g., [6, 22].

When noisy measurements of neighboring agents’ states are available, stochastic
approximation with decreasing step sizes may be applied to reduce long-term fluctu-
ation of the iteration [12, 13, 18, 19, 23, 26]. A popular tool for proving convergence
is to use quadratic Lyapunov functions. For fixed network topologies containing a
spanning tree, the existence of such functions is guaranteed. This is provable by the
constructive method in [11, 31]. For time-varying topologies, the use of Lyapunov
functions typically depends on assuming balanced graphs or restrictive eigenvalue
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conditions [1, 10, 19]. For time-varying directed graphs, the assumption of balanced
weights is very restrictive.

To overcome the limitation of the Lyaponov approach, a new technique is intro-
duced in [9]. Consider the stochastic consensus algorithm

Xt+1 = (I + atB
o
t )Xt + atD

o
tWt, t ≥ 0,

for n agents with randomly varying network topologies. Each matrix Bo
t is determined

by the random network topology at time t modeled by a directed graph Go
t . The

random matrix sequence {Do
t , t ≥ 0} is bounded. The sequence {Wt, t ≥ 0} consists

of independent vector random variables and is independent of {(Bo
t , D

o
t ), t ≥ 0}. We

take the step size at satisfying the standard conditions in stochastic approximation. It
is shown that mean square consensus is ensured if and only if {At := I + atB

o
t , t ≥ 0}

has ergodic backward products with probability one. By studying the trajectory
behavior of a switching linear system, it is further shown that such ergodicity holds,
and so the balanced graph assumption is removed. This idea is very different from
using paracontractions [7] or Wolfowitz’s theorem [29]. A key condition used in [9]
is that for a zero probability set N0 and each ω ∈ Ω\N0, there exists a sequence
0 = T0(ω) < T1(ω) < T2(ω) < . . . such that the graph union is strongly connected on
each discrete time interval [Tl(ω), Tl+1(ω)), l ≥ 0, and

sup
l
[Tl+1(ω)− Tl(ω)] < ∞.(1.1)

In this paper, we are interested in an important class of networks, where the
switches are governed by a finite state Markov chain {θt, t ≥ 0} and condition (1.1)
does not hold in general. The Markovian switches can model communication failure
[10, 33] and randomized scheduling for signal transmission. Our analysis starts by
considering the matrix sequence {I + atBθt , t ≥ 0} which naturally arises in stochas-
tic approximation algorithms in order to attenuate noise and is also of interest in
its own right. In some other situations, general stochastic matrices of the form
{I + atB

o
t , t ≥ 0}, converging to an identity matrix and so referred to as degener-

ating stochastic matrices [9], can be used to model hardening positions in consensus
models [2, 4]. In relation to [9], the route of analyzing stochastic approximation
through studying ergodic backward products of {I + atBθt , t ≥ 0} is still valid in this
Markovian switching model. However, we need to develop very different techniques to
establish ergodicity. We introduce an auxiliary noiseless Markovian jump linear sys-
tem associated with degenerating stochastic matrices and next examine the dynamics
of its second moment matrix, which is similar to [5, 21]. Based on the second moment
dynamics, we further identify a class of time-varying linear systems with two-scale
interactions, on which we will develop the main machinery for eventually proving er-
godicity of backward products. We also obtain the mean square convergence rate of
the backward products.

The approach of this paper will be further applied to study a noisy averaging
model where a token is used to schedule the broadcast of the state information of
a node. A well-known randomized scheduling rule for broadcast is to employ inde-
pendent Poisson clocks [8, 32]. Our scheduling mechanism has certain advantages
since the nodes have more autonomy in their operation. In contrast, Poisson clocks
implicitly demand more coordination since all agents should refer to a common time
scale.

We mention some recent literature on ergodicity of stochastic matrices over ran-
dom networks. The work [21] considers backward products of {Aθt , t ≥ 0} and
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establishes their almost sure convergence by the second moment dynamics. Average
consensus is proved when each matrix Aθt is further assumed to be doubly stochastic
[20]. The approach of [21] is to tackle a time-invariant linear difference equation and
the main condition is that the Markov chain is irreducible and that the graph union
contains a spanning tree. Our model gives rise to a time-varying difference equation
for the second moment dynamics and for this reason the associated asymptotic anal-
ysis is very different from [21]. For a sequence of independent stochastic matrices
{At, t ≥ 0}, ergodicity is proved by an infinite flow approach in [27].

The key idea in our two-scale analysis of the second moment dynamics is to con-
struct a lower dimensional model which is able to reflect certain connectivity proper-
ties ensured by the graph union. In a different context, two-scale consensus modeling
with Markovian regime switching is introduced in [16, 34] and weak convergence anal-
ysis is developed. The model in [16] includes a faster Markov chain to be tracked by
multiple sensors. The work [34] treats different relative values of the regime switching
rate and the step size used in the state update. For multiagent parameter estimation
problems, [14] uses step sizes of different scales for averaging states and incorporating
local parameter estimation.

We make some notes on notation. We use 1k to denote a column vector consisting
of k ones, and Jk = 1

k1k1
T
k . The indicator function of an event A is denoted by 1A.

We use I to denote an identity matrix with its dimension clear from the context.
For clarity, we sometimes indicate the dimension by adding a subscript (such as k
in Ik). The number M(i, j) denotes the (i, j)th entry of a matrix M . For a vector
or matrix M , denote the Frobenius norm |M | = [Tr(MTM)]1/2. For column vectors
Z1, . . . , Zk, [Z1; . . . ;Zk] denotes the column vector obtained by vertical concatenation
of the k vectors. Let {gt, t ≥ 0} and {ht, t ≥ 0} be two sequences where the latter is
a nonnegative sequence. Then gt = O(ht) means that there exist constants C and T
such that |gt| ≤ Cht for all t ≥ T , and gt = o(ht) means that for any ε > 0, there
exists T such that |gt| ≤ εht for all t ≥ T . The agent or node index is often used as a
superscript (xi

t, ζ
j
t , κ

i
t, etc.) and should not be understood as an exponent. We also

write some vectors (φk
t , z

k
t ∈ R

N ) with superscript k, which is obviously seen not to
be an exponent. The identification of these widely used superscripts should be clear
from the context.

The paper is organized as follows. Section 2 introduces the stochastic matrix
model with Markovian switches and decreasing step sizes, and section 3 presents
the main results on ergodicity and stochastic approximation. Section 4 analyzes the
second moment dynamics, and a two-scale model is obtained in section 5. Section 6
develops its convergence analysis. Section 7 analyzes the mean square convergence
rate of the backward products. An application of the main result in section 3 is
presented in section 8, which deals with a token scheduled averaging model. Section
9 concludes the paper.

2. The Markovian switching model.

2.1. Graph theoretic preliminaries. We introduce some standard preliminar-
ies on graph modeling of the network topology. A directed graph (digraph)G = (N , E)
consists of a set of nodes N = {1, . . . , n} and a set of directed edges E . A directed
edge (simply called an edge) is denoted by an ordered pair (i, j) ∈ N × N , where
i �= j. A directed path (from node i1 to node il) consists of a sequence of nodes
i1, . . . , il, l ≥ 2, such that (ik, ik+1) ∈ E . The digraph G is strongly connected if from
any node to any other node, there exists a directed path. A directed tree is a digraph
where each node i, except the root, has exactly one parent node j so that (j, i) ∈ E .
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We call G′ = (N ′, E ′) a subgraph of G if N ′ ⊂ N and E ′ ⊂ E . The digraph G is said
to contain a spanning tree if there exists a directed tree Gtr = (N , Etr) as a subgraph
of G. If (j, i) ∈ E , j is called an in-neighbor (or neighbor) of i, and i is called an
out-neighbor of j. Denote Ni = {j|(j, i) ∈ E}. If G is an undirected graph, each edge
is denoted as an unordered pair (i, j), where i �= j.

For a matrix M = (mij)i,j≤k ∈ R
k×k, if it either is a stochastic matrix or has

zero row sums and nonnegative off-diagonal entries, we define its interaction graph as
a digraph denoted by graph(M) = (NM , EM ), where NM = {1, . . . , k} and (j, i) ∈ EM
if and only if mij > 0.

2.2. The Markovian model. Let the underlying probability space be denoted
by (Ω,F , P ). Suppose that {θt, t = 0, 1, 2, . . .} is a Markov chain with state space
{1, . . . , N} and transition probability matrix

Pθ = (plm)1≤l,m≤N .

Let {Bk, k = 1, . . . , N} be n × n matrices. Each Bk has zero row sums and
nonnegative off-diagonal entries and can be interpreted as the generator of an n state
continuous time Markov chain. Each Bk is associated with its interaction digraph
Gk = (N , Ek), where N = {1, . . . , n} and (j, i) ∈ Ek if and only if bij > 0.

Consider the sequence of matrices

{I + atBθt , t ≥ 0}.
As t → ∞, I + atBθt tends to the identity matrix describing a trivial Markov chain
without transitions. Following [9], we call it a sequence of degenerating stochastic
matrices. Denote the backward product Ψt,s = (I + at−1Bθt−1) · · · (I + asBθs) for
t > s and Ψs,s = I. Our first task is to examine the asymptotic property of Ψt,s for
any fixed s when t → ∞.

Remark 1. Throughout the paper we assume

inf
t≥0,l,i

(1 + atBl(i, i)) ≥ 0

and otherwise may start with a large fixed initial time t0 instead of time 0 and consider
t ≥ t0.

We make the following assumptions:
(A1) {at, t = 0, 1, 2, . . .} is a nonnegative sequence satisfying (i)

∑∞
t=0 at = ∞,

(ii)
∑∞

t=0 a
2
t < ∞.

(A2) The Markov chain {θt, t ≥ 0} with state space {1, . . . , N} is ergodic (i.e.,
irreducible and aperiodic).

The initial distribution of {θt, t ≥ 0} is fixed and denoted by μθ0 . By (A2), the
Markov chain has a unique stationary distribution π = (π1, . . . , πN ) consisting of N
positive entries [25].

(A3) The union graph ∪N
k=1Gk contains a spanning tree G∪,tr.

3. Ergodicity and stochastic approximation. A sequence of stochastic ma-
trices {At, t ≥ 0} has ergodic backward products if for any given s, limt→∞ At . . .
As+1As exists and is a matrix of identical rows.

Theorem 3.1. Assume (A1)–(A3). The sequence of stochastic matrices {I +
atBθt , t ≥ 0} has ergodic backward products with probability one.

Before being able to prove this basic result, we need to develop the analytical
tools in sections 4–6. The proof of Theorem 3.1 is postponed to Appendix B.
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The ergodicity analysis for {I + atBθt , t ≥ 0} on one hand is important for es-
tablishing the mean square consensus result in Theorem 3.4 and on the other hand is
interesting in its own right.

3.1. Stochastic approximation. Denote Xt = [x1
t , . . . , x

n
t ]

T . Consider the
stochastic approximation based consensus algorithm

Xt+1 = (I + atBθt)Xt + atDθtWt, t ≥ 0,(3.1)

where the Markov chain {θt, t ≥ 0} determines the underlying network topology for
information exchange between the agents. The dimension of the constant matrices
{D1, . . . , DN} is compatible with the noise vector Wt. This conceptually simple mod-
eling can characterize the temporal correlation in the evolution of the network.

A similar Markovian switching noisy consensus model has been studied in [10].
However, that work assumed either balanced graphs or, more restrictively, the exis-
tence of a common Lyapunov function. The present work does not depend on such
assumptions.

(A4) {Wt, t ≥ 0} is a sequence of independent vector random variables of zero
mean, which is independent of {θt, t ≥ 0}. In addition, supt E|Wt|2 < ∞ and
E|X0|2 < ∞.

To study the convergence of (3.1), we introduce the definition.
Definition 3.2. The n nodes are said to achieve mean square consensus if

E|xi
t|2 < ∞, t ≥ 0, 1 ≤ i ≤ n, and there exists a random variable x∗ such that

limt→∞ E|xi
t − x∗|2 = 0 for 1 ≤ i ≤ n.

The next lemma is an immediate consequence of [9, Theorem 3] by running (3.1)
with a general initial time-state pair (t0, Xt0), t0 ≥ 0.

Lemma 3.3. Under (A1)–(A4), (3.1) ensures mean square consensus for any
given initial time-state pair (t0, Xt0) with E|Xt0 |2 < ∞ if and only if {I + atBθt} has
ergodic backward products with probability one.

Theorem 3.4. Assume (A1)–(A4). The algorithm (3.1) ensures mean square
consensus.

Proof. This theorem follows from Lemma 3.3 and Theorem 3.1.

4. The second moment dynamics. Throughout this section, (A1)–(A2) are
assumed. The backward products of {I + atBθt , t ≥ 0} will be studied by use of the
difference equation

Xt+1 = (I + atBθt)Xt.(4.1)

For this linear system, we run it with any initial time-state pair (t0, Xt0), where Xt0 is
deterministic. The process {θt, t ≥ t0} is the restriction of the original Markov chain
{θt, t ≥ 0} on the discrete time interval [t0,∞). For t ≥ 0, let μθt be the distribution
of θt.

Denote

Vl(t) = E
[
XtX

T
t 1{θt=l}

]
, t ≥ t0,(4.2)

V (t) =

N∑
l=1

Vl(t).(4.3)

The expectation in (4.2) is evaluated using (Xt0 , μθt0
), where μθt0

in turn is deter-
mined from μθ0 . The object Vl(t) was also used in [21] for a Markovian switching
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linear consensus model Xt+1 = AθtXt which does not have a step size at as in (4.1).
The approach of [21] is to obtain a time-invariant linear system for {Vl, 1 ≤ l ≤ N}
and check its asymptotic property, which is very different from our approach to be
developed below.

Recall that π = (π1, . . . , πN ) is the stationary distribution of {θt, t ≥ 0}. For
t ≥ t0, we have the second moment dynamics

Vl(t+ 1) = E
[
Xt+1X

T
t+11{θt+1=l}

]
=

N∑
m=1

E
[
(I + atBm)XtX

T
t (I + atBm)T 1{θt+1=l,θt=m}

]

=

N∑
m=1

pmlE
[
(I + atBm)XtX

T
t (I + atBm)T 1{θt=m}

]

=

N∑
m=1

pml(I + atBm)Vm(t)
(
I + atB

T
m

)
.

For an m × n matrix M , vec(M) is an mn dimensional column vector obtained by
stacking its n columns in order with the first column on top. Let ξlt = vec(Vl(t))
and ξt = [ξ1t ; . . . ; ξ

N
t ] as vertical concatenation of the N components. Denote the

Kronecker sum A⊕B = A⊗ In + In ⊗B for n× n matrices A and B. We have

ξt+1 =

⎛
⎜⎝

p11In2 p21In2 . . . pN1In2

...
...

. . .
...

p1NIn2 p2NIn2 . . . pNNIn2

⎞
⎟⎠ ξt

+ at

⎛
⎜⎝

p11(B1 ⊕B1) . . . pN1(BN ⊕BN )
...

. . .
...

p1N (B1 ⊕B1) . . . pNN (BN ⊕BN )

⎞
⎟⎠ ξt

+ a2t

⎛
⎜⎝

p11(B1 ⊗B1) . . . pN1(BN ⊗BN )
...

. . .
...

p1N (B1 ⊗B1) . . . pNN(BN ⊗BN )

⎞
⎟⎠ ξt

=: (M1,0 + atM2,0 + a2tM3,0)ξt.(4.4)

A matrix is said to be nonnegative if all its entries are nonnegative.
Proposition 4.1. (i) Both M2,0 and M3,0 have zero row sums. (ii) M1,0 +

atM2,0 + a2tM3,0 is a nonnegative matrix.
Proof. Part (i) can be verified directly. We check (ii). By Remark 1, the only

possible entries within atM2,0 + a2tM3,0 to have negative values are the ((l − 1)n2 +
i, (m − 1)n2 + i)th entries, l,m = 1, . . . , N , i = 1, . . . , n2. We take l = 1,m = 1, i =
1, and all other cases can be checked similarly. The (1, 1)th entry of the matrix
M1,0 + atM2,0 + a2tM3,0 is

p11[1 + 2b1(1, 1)at + (b1(1, 1))
2a2t ] ≥ 0.

This proves (ii).
To facilitate further analysis, we will modify (4.4) into a new form. Denote the

matrix Π = diag(π1In2 , . . . , πNIn2) ∈ R
Nn2×Nn2

and introduce the linear transfor-
mation

ξ̄t = Π−1ξt, t ≥ t0.
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Denote

M1 = Π−1M1,0Π =

⎛
⎜⎝

π1p11

π1
In2

π2p21

π1
In2 . . . πNpN1

π1
In2

...
...

. . .
...

π1p1N

πN
In2

π2p2N

πN
In2 . . . πNpNN

πN
In2

⎞
⎟⎠ ,

M2 = Π−1M2,0Π =

⎛
⎜⎝

π1p11

π1
(B1 ⊕B1) . . . πNpN1

π1
(BN ⊕BN )

...
. . .

...
π1p1N

πN
(B1 ⊕B1) . . . πNpNN

πN
(BN ⊕BN )

⎞
⎟⎠ ,

and M3 = Π−1M3,0Π. Then

ξ̄t+1 = (M1 + atM2 + a2tM3)ξ̄t.(4.5)

Although ξ̄t has been defined in terms of {Vl(t), 1 ≤ l ≤ N} for t ≥ t0, the linear

system (4.5) can be studied in terms of any initial pair (t1, ξ̄t1) ∈ Z+×R
Nn2

for t1 ≥ 0.
Proposition 4.2. (i) M2 and M3 have zero row sums. (ii) For each t ≥ 0,

M1 + atM2 + a2tM3 is a stochastic matrix. (iii) M1 + atM2 is a stochastic matrix for
all t ≥ t∗0 provided that inft≥t∗0 ,l,i(1 + 2atBl(i, i)) ≥ 0.

Proof. Analogous to the proof of Proposition 4.1, we can show that (i) holds.
Furthermore, M1 + atM2 + a2tM3 is a nonnegative matrix. Now it suffices to show
that M1 has unit row sums. For each l, the stationary distribution (π1, . . . , πN )

satisfies
∑N

k=1 πkpkl = πl. So the lth row sum of M1 equals 1. Part (ii) follows.
We check the ((l − 1)n2 + i, (m − 1)n2 + i)th entry of M1 + atM2, l,m = 1, . . . , N ,
i = 1, . . . , n2. For instance,

[M1 + atM2](1, 1) = p11(1 + 2atB1(1, 1)) ≥ 0,

[M1 + atM2](2, 2) = p11(1 + atB1(1, 1) + atB1(2, 2)) ≥ 0

for t ≥ t∗0. In this manner, the N2n2 entries are verified to be nonnegative. All
remaining entries of M1 + atM2 are clearly nonnegative. Part (iii) follows.

Since at → 0, there exists t∗0 satisfying the condition in Proposition 4.2. We
consider the new linear system

ζt+1 = (M1 + atM2)ζt, t ≥ t∗0.(4.6)

We denote two statements: S1 (resp., S2)—Algorithm (4.5) (resp., (4.6)) ensures
consensus with any given initial pair (t1, ξ̄t1) (resp., (t1, ζt1), t1 ≥ t∗0).

Lemma 4.3. S1 is equivalent to S2.
Proof. For given initial pairs (t1, ξ̄t1) and (t1, ζt1), we have

∑∞
t=t1

a2t |M3ξ̄t| < ∞
and

∑∞
t=t1

a2t |M3ζt| < ∞. Thus one algorithm may be viewed as another subject to
small perturbation. The method is similar to the proof of [9, Lemma B.2].

5. The averaging model with two-scale interactions. Throughout this sec-
tion, (A1)–(A3) are assumed. We view (4.6) as a consensus problem with Nn2 agents
indexed by {1, 2, . . . , Nn2}. To identify the interaction relation of these agents, we
introduce a small parameter ε > 0 and define the matrix

Mε = M1 + εM2.



3346 MINYI HUANG, TAO LI, AND JI-FENG ZHANG

Denote β = maxk,i |Bk(i, i)| > 0. For each fixed

ε ∈ (0, (4β)−1],

Mε is a stochastic matrix and can be associated with a Markov chain {Υt, t ≥ 0} of
Nn2 states {1, 2, . . . , Nn2}. Denote the list

S1 = {1, n2 + 1, . . . , (N − 1)n2 + 1},
S2 = {2, n2 + 2, . . . , (N − 1)n2 + 2},

...

Sn2 = {n2, 2n2, . . . , Nn2}.

This list will be used as a partition of the states of {Υt, t ≥ 0} and later on for
classifying the Nn2 agents of (4.6) into n2 groups.

Denote the matrix

Pπ = (qlm)1≤l,m≤N =

(
πmpml

πl

)
1≤l,m≤N

,

which can be verified to be a stochastic matrix.
Lemma 5.1. The stochastic matrix (qlm)l,m≤N is ergodic and its stationary dis-

tribution is π.
Proof. See Appendix A.
Theorem 5.2. Suppose that (A3) holds with i0 being the root of G∪,tr. Then the

state i0 of the Nn2 state Markov chain {Υt, t ≥ 0} is reachable from any other state
with positive probability; equivalently, graph(Mε) contains a spanning tree GMε,tr with
i0 being its root.

Proof. See Appendix A.
For the N states in Si, i ≤ n2, denote the transition probability

p
(i)
lm = P

(
Υt+1 = (m− 1)n2 + i|Υt = (l − 1)n2 + i

)
and P (i) = (p

(i)
lm)l,m≤N . It is straightforward to show

P (i) = (qlm)l,m≤N + εQ(i),

which is a substochastic matrix and where Q(i) does not depend on ε.
Remark 2. When ε becomes very small, the transition probabilities among the

states within Si are mainly determined by the ergodic matrix (qlm)l,m≤N . By the
structure of Mε, the transition probability from one state in Si to another in Sj , i �= j
(if nonzero) is on the order of ε.

We visualize S1 ∪ · · · ∪ Sn2 as a decomposition of the state space of {Υt, t ≥ 0}
where strong interactions exist within each set Si and no strong interactions exist
between any Si and Sj , i �= j. Below we will exploit this structure to transform (4.6)
into an equivalent form, which appears to be simpler. This will be done using at in
place of ε.

Recall that ζt in (4.6) is viewed as the state vector of Nn2 agents. Denote ζt =

[ζ1t , ζ
2
t , . . . , ζ

Nn2

t ]T , where each superscript j ≤ Nn2 is used as an agent index. Now we
rewrite (4.6) by reordering the position of the Nn2 agents. The collection S1, . . . , Sn2
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will be used to denote different groups of the Nn2 agents of (4.6). Let φk
t ∈ R

N be
the states of the agents with indices in Sk,

(5.1) φk
t =

[
ζkt , ζ

n2+k
t , . . . , ζ

(N−1)n2+k
t

]T
, 1 ≤ k ≤ n2.

We take a permutation of the components of ζt to get the new vector

φt :=
[
φ1
t ;φ

2
t ; . . . ;φ

n2

t

]
.

In fact, there exists a unique nonsingular matrix Γ such that

φt = Γζt.

By (4.6), the new state vector φt satisfies

φt+1 = Γ(M1 + atM2)Γ
−1φt =: M̂(at)φt.(5.2)

It is clear that M̂(at) is a stochastic matrix if M1 + atM2 is.
Remark 3. By Proposition 4.2, M̂(at) is a stochastic matrix for all large t.
Theorem 5.3. M̂(at) has the representation

M̂(at) =

⎡
⎢⎢⎢⎣

M̂11(at) atM̂12 · · · atM̂1n2

atM̂21 M̂22(at) · · · atM̂2n2

...
. . .

atM̂n21 atM̂n22 · · · M̂n2n2(at)

⎤
⎥⎥⎥⎦ ,(5.3)

where
(i) M̂ij ∈ R

N×N is a constant nonnegative matrix for any i �= j, and so indepen-
dent of the value of at.

(ii) M̂ii(at) + at
∑

j 
=i M̂ij = (qlm)l,m≤N for all i ≤ n2.

Proof. Consider (4.6) and any agent i′ ∈ Si with state of the form ζ
(j−1)n2+i
t for

some 1 ≤ j ≤ N . If this agent updates its state using the state of an agent j′ ∈ Sj ,
the weight assigned to j′ can only originate as an entry of atM2; see Remark 2. This
implies that all off-diagonal blocks in (5.3) must take the form atM̂ij . By Proposi-

tion 4.2, whenever at is sufficiently small, M1 + atM2 and so M̂(at) are nonnegative
matrices. So M̂ij is nonnegative for i �= j. This proves (i).

To show (ii), we check A1 := M̂11(at) + at
∑

j 
=1 M̂1j. First, M̂11(at)(1, 1) =

q11 + 2atq11B1(1, 1). Next,
∑n2

j=2 atM̂1j(1, 1) = 2atq11
∑n

j=2 B1(1, j). Therefore,
A1(1, 1) = q11. We continue to check A1(1, l), 1 < l ≤ N . Then

M̂11(1, l) = M1(1, (l − 1)n2 + 1) + atM2(1, (l − 1)n2 + 1)

= q1l + atq1l(2Bl(1, 1)),

atM̂1j(1, l) = atM2(1, (l − 1)n2 + j)

= atq1l(Bl ⊗ In + In ⊗Bl)(1, j), j ≥ 2,

which is the weight agent 1 in (4.6) assigns to the agent as the lth member of the jth
group Sj . It can be checked that

n2∑
j=2

(Bl ⊗ In + In ⊗Bl)(1, j) = 2

n∑
k=2

Bl(1, k).
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It follows that

A1(1, l) = M̂11(1, l) +

n2∑
j=2

atM̂1j(1, l) = q1l.

In the same manner we can check the remaining entries of A1 and also other cases of
M̂ii, 2 ≤ i ≤ n2 − 1. The theorem follows.

By Theorem 5.3, we may write (5.2) as⎡
⎢⎢⎢⎣
φ1
t+1

φ2
t+1
...

φn2

t+1

⎤
⎥⎥⎥⎦=
⎡
⎢⎢⎢⎣

M̂11(at) atM̂12 · · · atM̂1n2

atM̂21 M̂22(at) · · · atM̂2n2

...
. . .

atM̂n21 atM̂n22 · · · M̂n2n2(at)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

φ1
t

φ2
t
...

φn2

t

⎤
⎥⎥⎥⎦ ,(5.4)

which will be called a canonical form of (4.6).
We may view (5.4) as a two-scale averaging model. To avoid confusion, when a

consensus model is examined with a corresponding number of agents, the index of
an agent is specified according to the position of its state within the state vector.
For instance, φ1

t denotes the states of agents with indices {1, . . . , N}. Denote Ŝk =
{(k − 1)N + 1, . . . , kN}, k = 1, . . . , n2. By (5.1), it is evident that the agent indices
Ŝk in (5.4) and Sk in (4.6) refer to the same group of agents physically.

The canonical form makes it convenient to identify the interaction structure of
the Nn2 agents. Within each group Ŝk, averaging takes place rapidly when (5.4) is
iterated. The interconnection between the groups is controlled by the step size at. By
Theorem 5.3, once at is fixed, the matrix M̂(at) is completely determined by the set
of off-diagonal blocks. We will continue to check whether they will be able to generate
adequate interactions among the groups {Ŝ1, . . . , Ŝn2} in some sense.

We define a new graph which has fewer nodes than graph(M̂(ε)). Its purpose is
to indicate the information flow among different agent groups Ŝ1, . . . , Ŝn2 of (5.4).

Let Ĝq be a digraph with nodes Nq = {1, 2, . . . , n2} and the set of edges Eq. An
edge (j, i) ∈ Eq if and only if M̂ij �= 0. If we identify all nodes of each Si as an

equivalent class, Ĝq defined above may be called a quotient graph of graph(Mε). The

graph Ĝq does not depend on the particular value of the small parameter ε.

Lemma 5.4. For Ĝq, (j, i) ∈ Eq if and only if there is an edge on graph(Mε) from
a node in Sj to a node in Si.

Proof. There is an edge on graph(Mε) from a node in Sj to a node in Si if and

only if M̂ij �= 0.

Theorem 5.5. Ĝq contains a spanning tree.
Proof. By Theorem 5.2, graph(Mε) contains a spanning tree GMε,tr. Without loss

of generality, assume that the root of GMε,tr is node 1. It suffices to show that node

1 of Ĝq can reach any other node j ∈ {2, . . . , n2} by a directed path. Select such a
node j.

Consider graph(Mε). There exists a directed path from node 1 ∈ S1 to node
j ∈ Sj. Denote this directed path by 1, k2, k3, . . . , kr, j. Suppose that ki ∈ Sdi . We
list S1, Sd2 , . . . , Sdr , Sj . For this list, if Sk appears successively in a segment, we list Sk

only once corresponding to that segment. By Lemma 5.4, the resulting list identifies
a directed path from node 1 to node j in Ĝq.

Remark 4. Theorems 5.2, 5.3, 5.5, and Lemma 5.4 still hold if (A2) is replaced
by the weaker assumption that {θt, t ≥ 0} is irreducible while all other assumptions
remain the same.



CONSENSUS DYNAMICS OVER MARKOVIAN NETWORKS 3349

6. Convergence of algorithm (5.4). Assume (A1)–(A3) for this section. For

each φk
t , denote φk

t = [φk,1
t , . . . , φk,N

t ]T ∈ R
N . In this section the integer k ≤ n2 will

frequently be used as a superscript but not an exponent for various vectors. Consider
(5.4) with any given initial pair (t1, φt1). Our method is to derive a lower dimensional
model. Each component φk

t corresponds to N equations within (5.4) for which we

attempt to only retain the equation for φk,1
t .

Recall that Pπ = (qlm)l,m≤N is an ergodic stochastic matrix. Denote its N eigen-
values by λ1 = 1, λ2, . . . , λN . Then max2≤l≤N |λl| < 1. Fix any δ ∈ (max2≤l≤N |λl|, 1).
Define

a∗t =

t∑
s=0

δt−sas, t ≥ 0.

The next lemma provides some prior estimate of the difference between different
entries in φk

t .
Lemma 6.1. We have

max
k

max
l,m

|φk,l
t − φk,m

t | = O(a∗t ), t ≥ t1.

Proof. First, there exists a constant C, depending on the initial pair (t1, φt1) of
(5.4), such that supt,k |φk

t | ≤ C; see Remark 3. Denote Hk(at) = at
∑

j 
=k M̂kj(φ
j
t −

φk
t ). Hence |Hk(at)| = O(at). Next, we check φk

t and by Theorem 5.3 have the relation

φk
t+1 = Pπφ

k
t +Hk(at).(6.1)

Note that Pπ − I has rank N − 1. Let ΦN−1 be an n × (n − 1) matrix such that
span(ΦN−1) = span(Pπ − I). Denote Φ = [1N ,ΦN−1] ∈ R

N×N . By the method in
[12] we can show that Φ is nonsingular and

Φ−1PπΦ =

[
1 0
0 Aπ

]
,

where Aπ is an (N − 1)× (N − 1) matrix having all eigenvalues with absolute value
less than δ. In fact the first row of Φ−1 is equal to π. There exists a constant C such
that the power of Aπ satisfies

|At
π| ≤ Cδt, t ≥ 0.

Take a change of coordinates zkt = Φ−1φk
t ∈ R

N , and denote zkt = [zk,1t , . . . , zk,Nt ]T =

[zk,1t ; zk,−1
t ]. Thus, zk,1t = πφk

t . We obtain

zk,1t+1 = zk,1t +O(at),

zk,−1
t+1 = Aπz

k,−1
t +Hk,−1(at),(6.2)

where Hk,−1(at) is determined from Hk(at) and so |Hk,−1(at)| = O(at). The second
equation leads to

|zk,−1
t | =

∣∣∣∣∣At−t1
π zk,−1

t1 +

t−1∑
s=t1

At−1−s
π Hk,−1(as)

∣∣∣∣∣
= O

(
δt−t1 + a∗t−1

)
= O(a∗t ).(6.3)
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Now for t ≥ t1,

φk
t = Φzkt = [1N ,ΦN−1]zt = zk,1t 1N +ΦN−1z

k,−1
t .(6.4)

The lemma follows.
For a matrix M , we use rsuml(M) to denote the sum of its lth row. With a slight

abuse of notation, we will sometimes use O(at) (or o(at), O(a∗t ), etc.) to denote a
vector or matrix of compatible dimension. It means that each entry of the vector or
matrix is of the form O(at) (or o(at), O(a∗t )).

Theorem 6.2. For k = 1, 2, . . . , n2, we have

zk,1t+1 =
(
1 + atb̂kk

)
zk,1t + at

n2∑
j=1,j 
=k

b̂kjz
j,1
t +O((a∗t )

2), t ≥ t1,(6.5)

where b̂kj =
∑N

l=1 πlrsuml(M̂kj) for j �= k, and b̂kk = −∑n2

j=1,j 
=k b̂kj .
Proof. By (6.1), we have

zk,1t+1 = πφk
t+1

= πPπφ
k
t − atπ

∑
j 
=k

M̂kjφ
k
t + atπ

∑
j 
=k

M̂kjφ
j
t

= zk,1t − atπ
∑
j 
=k

M̂kjφ
k
t + atπ

∑
j 
=k

M̂kjφ
j
t .(6.6)

Since zk,1t = πφk
t , it follows from Lemma 6.1 that for each l,

|φk,l
t − zk,1t | =

∣∣∣∣∣
N∑

m=1

πm(φk,l
t − φk,m

t )

∣∣∣∣∣ = O(a∗t ).

Therefore,

π
∑
j 
=k

M̂kjφ
k
t = π

∑
j 
=k

M̂kj

[
zk,1t 1N +O(a∗t )

]
= zk,1t

∑
j 
=k

N∑
l=1

πlrsuml(M̂kj) +O(a∗t )

=
(∑

j 
=k

b̂kj

)
zk,1t +O(a∗t ).

Similarly,

π
∑
j 
=k

M̂kjφ
j
t = π

∑
j 
=k

M̂kj

[
zj,1t 1N +O(a∗t )

]
=
∑
j 
=k

zj,1t

N∑
l=1

πlrsuml(M̂kj) +O(a∗t )

=
∑
j 
=k

b̂kjz
j,1
t +O(a∗t ).

The theorem follows by combining (6.6) with the above estimates and the fact that
at = O(a∗t ).

Remark 5. Lemma 6.1 and Theorem 6.2 hold under a much weaker condition
on at, t ≥ 0. We only need 0 ≤ at → 0 and supt at > 0; the new condition does not
affect Theorem 5.3 and it ensures that (6.3) holds and that M1+ atM2 is a stochastic
matrix for all large t.
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Define

B̂ =
(
b̂kj

)
k,j≤n2

,(6.7)

which has zero row sums and nonnegative off-diagonal entries. Denote yt = [z1,1t , . . . ,

zn
2,1

t ]T . Let (6.5) be written in the vector form

yt+1 =
(
In2 + atB̂

)
yt +O

(
(a∗t )

2
)
, t ≥ t1.(6.8)

Lemma 6.3. graph(B̂) = Ĝq.

Proof. Both digraphs have the set of nodes {1, . . . , n2}. Note that M̂kj is a
nonnegative matrix for any (j, k). Also, the stationary distribution π has N positive

entries. So b̂kj > 0 if and only if M̂kj �= 0. On the other hand, (j, k) is an edge of

graph(B̂) if and only if b̂kj > 0; (j, k) is an edge of Ĝq if and only if M̂kj �= 0. We

conclude that both graph(B̂) and Ĝq have the same set of edges.
Theorem 6.4. The algorithm (5.4) ensures consensus for any give initial pair

(t1, φt1).
Proof. Consider the algorithm

y′t+1 =
(
In2 + atB̂

)
y′t.(6.9)

This is a special case of the stochastic approximation algorithm in [12] by setting the
noise as zero. By Theorem 5.5, Lemma 6.3, and the step size condition (A1), (6.9)
ensures consensus with any initial pair (t0, y

′
t0).

Given any initial pair (t1, φt1), we accordingly determine the initial pair (t1, yt1)

in (6.8). Denote rt =
1−δt+1

1−δ . We observe that

(a∗t )
2 = r2t

(
t∑

s=0

δt−s

rt
as

)2

≤ r2t

t∑
s=0

δt−s

rt
a2s ≤ 1

1− δ

t∑
s=0

δt−sa2s.

This implies that

∞∑
t=0

(a∗t )
2 ≤ 1

1− δ

( ∞∑
k=0

δk

) ∞∑
s=0

a2s =
1

(1− δ)2

∞∑
s=0

a2s < ∞.(6.10)

By the convergence of (6.9), it follows from (6.10) and [9, Lemmas B.1, B.2] that for
(6.8) with any given initial pair (t1, yt1), yt converges to a limit vector in span{1n2}.
In other words, there exists a common constant c such that

lim
t→∞ zk,1t = c for all k = 1, . . . , n2.

Subsequently, limt→∞ φk
t = limt→∞ Φzkt = c1N since limt→∞ |zk,−1

t | = 0. This gives
limt→∞ φt = c1Nn2 . The theorem follows.

7. Convergence rate. Ergodicity of the backward products of {I+atBθt , t ≥ 0}
has a central role in analyzing the stochastic approximation algorithm (3.1). Theorem
3.1 only characterizes a qualitative property of the sequence of backward products.
Here we aim to obtain more information on its asymptotic behavior by establishing
its mean square convergence rate.



3352 MINYI HUANG, TAO LI, AND JI-FENG ZHANG

With some regularity on {at, t ≥ 0}, we may simplify the estimates in section 6.
We prove the lemma below without requiring (A1).

Lemma 7.1. If {at, t ≥ 0} satisfies 0 < at → 0 and limt→∞ at

at+1
= 1, then for

any initial pair (t1, yt1),

yt+1 =
(
In2 + atB̂

)
yt +O(a2t ), t ≥ t1,(7.1)

where yt = [z1,1t , . . . , zn
2,1

t ]T and B̂ is defined by (6.7).
Proof. We follow the notation in section 6 and recall Remark 5. Rewrite (6.2) in

the form

a−1
t+1z

k,−1
t+1 = Aπ

(
a−1
t zk,−1

t

) at
at+1

+ a−1
t+1 Hk,−1(at), t ≥ t1.

Denote vt = a−1
t zk,−1

t . This gives

vt+1 = (1 + o(1))Aπvt +O(1).(7.2)

Since Aπ is stable (i.e., all its eigenvalues are inside the unit circle), we may specify any
Q0 > 0 and solve a unique P0 > 0 from the Lyapunov equation AT

πP0Aπ−P0+Q0 = 0.
By use of (7.2), we may find a small constant 0 < c0 < 1 such that

vTt+1P0vt+1 ≤ (1 − c0)v
T
t P0vt +O(1).

Hence supt≥t1 |vt| < ∞ and

|zk,−1
t | = O(at).(7.3)

By adapting the proofs of Lemma 6.1 and Theorem 6.2, we see that under the current
assumption, Lemma 6.1 and consequently (6.5) still hold when a∗t is replaced by at.
This completes the proof.

Taking γ ∈ (1/2, 1], we choose

at =
1

tγ
, t ≥ 1,(7.4)

and a0 > 0. The more general case of at =
c
tγ for t ≥ 1, c > 0 can be reduced to (7.4)

by replacing {B1, . . . , BN} by a new set of matrices. It is clear that (7.4) satisfies the
assumption on {at, t ≥ 0} in Lemma 7.1.

Denote the backward product

Ψt+1,t0 = (I + atBθt) . . . (I + at0Bθt0
), t ≥ t0,

Ψt0,t0 = I, where {at, t ≥ 0} is given by (7.4). According to Remark 1, we still
assume that I + atBθt is a stochastic matrix for all t. Under (A1)–(A3), Theorem
3.1 shows that Ψt+1,t0 converges with probability one to a random matrix denoted by

Ψ∞,t0 which has identical rows. Since graph(B̂) contains a spanning tree by Theorem

5.5 and Lemma 6.3, B̂ has 1 eigenvalue equal to zero and n2 − 1 eigenvalues having
strictly negative real parts [12]. Suppose that σ0 > 0 is a constant such that all
nonzero eigenvalues of B̂ have a real part strictly less than −σ0.

Theorem 7.2. Let the step sizes be given by (7.4) and assume (A2)–(A3).
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(i) If 1/2 < γ < 1, we have

E|Ψt+1,t0 −Ψ∞,t0 |2 = O

(
1

t2γ−1

)
.

(ii) If γ = 1,

E|Ψt+1,t0 −Ψ∞,t0 |2 = O

(
1

tη

)
.

where η = min{1, σ0}.
Proof. Step 1. Consider the linear system

Xt+1 = (I + atBθt)Xt, t ≥ t0.

As in (B.2), set the initial condition X
(i)
t0 = ei and denote the corresponding solution

X
(i)
t = Ψt,t0X

(i)
t0 for t ≥ t0. Then

Ψt+1,t0 =
[
X

(1)
t+1, . . . , X

(n)
t+1

]
, t ≥ t0.

It follows that with probability one X
(i)
t converges to ηi1n which is equal to the ith

column of Ψ∞,t0 and where ηi is a random variable. We have

|Ψt+1,t0 −Ψ∞,t0 |2 =

n∑
i=1

∣∣∣X(i)
t+1 − ηi1n

∣∣∣2 .
Below we check X

(1)
t and simply write it as Xt = [Xt,1, . . . , Xt,n]

T . Since η11n is
obtained as the limit state vector of a consensus model, we necessarily have

min
k

Xt,k ≤ η1 ≤ max
k

Xt,k, t ≥ t0.

Consequently, |Xt,k−η1| ≤ maxj |Xt,k−Xt,j| ≤
∑n

j=1 |Xt,k−Xt,j| almost surely. We

need to estimate E|Xt,k −Xt,j |2. For the initial condition Xt0 = e1, we accordingly
define Vl(t) by (4.2) and ξ̄t by (4.5) for t ≥ t0. The cases of X(i), i ≥ 2, can be
handled in exactly the same manner.

Step 2. Recalling (7.1), we write

yt+1 =
(
In2 + atB̂

)
yt +O(a2t ),

for which we set the initial time t0. By an appropriate change of coordinates yt = Φ̂pt
[12], we have

p
(1)
t+1 = p

(1)
t +O(a2t ),

p
(−1)
t+1 =

(
In2−1 + atB̂0

)
p
(−1)
t +O(a2t ),

where pt = [p
(1)
t ; p

(−1)
t ], p

(−1)
t ∈ R

n2−1 and B̂0 is an (n2−1)×(n2−1) Hurwitz matrix.

We have the limits p
(1)
t → p

(1)
∞ and p

(−1)
t → 0 as t → ∞. For {at, t ≥ 0} given by

(7.4), denote εt =
∑∞

s=t a
2
s. Then∣∣∣p(1)t − p(1)∞

∣∣∣ = O(εt) = O
(
t1−2γ

)
.
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Denote δt = |p(−1)
t |. There exists a constant c such that limt→∞ yt = c1n2 , and

|yt − c1n2 | = O(εt + δt).

In other words, ∣∣∣∣[z1,1t , . . . , zn
2,1

t

]T
− c1n2

∣∣∣∣ = O(εt + δt).

By (6.4) and (7.3),

|φk
t − c1N | = O(at + εt + δt).

Thus,

|ζt − c1Nn2| = O(at + εt + δt).

The above estimate is valid for any given (t0, ζt0) and it allows us to have t0 ≤ t∗0 in
(4.6).

Step 3. For Xt in Step 1 with initial pair (t0, e1), we determine Vl(t0) and accord-
ingly ξ̄t0 for (4.5). Denote the limit of ξ̄t by c11Nn2 which exists. By setting ζt0 = ξ̄t0
in (4.5)–(4.6) and comparing the two solutions, we further obtain

|ξ̄t − c11Nn2 | = O(at + εt + δt).

Let Π be defined as in section 4. It follows that

|ξt − c1Π1Nn2 | = |Πξ̄t − c1Π1Nn2 | = O(at + εt + δt).

On the other hand,∣∣Vl(t)− c1πl1n1
T
n

∣∣ = ∣∣ξlt − c1πl1n2

∣∣ ≤ |ξt − c1Π1Nn2 |.

Let V (t) be defined by (4.3) and recall Jn = 1
n1n1

T
n . It follows that

|V (t)− c1nJn| = O(at + εt + δt).

Therefore,

E|Xt,i −Xt,j|2 = (ei − ej)
T [V (t)− c1nJn](ei − ej)

≤ (ei − ej)
T |V (t)− c1nJn|(ei − ej)

= O(at + εt + δt).

Step 4. If 1/2 < γ < 1, δt = O(t−γ) by Lemma A.2. Hence

E|Xt,i −Xt,j|2 = O(t−γ + t1−2γ) = O(t1−2γ).

If γ = 1, δt = O(t−η) by Lemma A.2. This gives

E|Xt,i −Xt,j |2 = O(t−1 + t−η) = O(t−η).

By Step 1, the theorem follows.
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8. Application to token scheduled averaging. Let G = (N , E) be a strongly
connected digraph, where N = {1, . . . , n}. The token process {Tt, t = 0, 1, . . .} is a
random walk on G, and so is a Markov chain with state space {1, . . . , n}. Let μ̂0 be
the distribution of T0. The transition probability is P (Tt+1 = j|Tt = i) = p̂ij , where
p̂ij > 0 if and only if i ∈ Nj . Denote PT = (p̂ij)i,j≤n. It is evident that G is strongly
connected if and only if {Tt, t ≥ 0} is irreducible.

Each node has a counter κi
t, i ∈ N , t ≥ 0. The initial value κi

0 ≥ 0 is a determin-
istic integer. The counter is updated by the rule

κi
t+1 = κi

t + 1{Tt+1=i}, t ≥ 0,

where 1A stands for the indictor function of an event A. This means that the counter
is incremented by one upon each new possession of the token.

If Tt = i, node i broadcasts its state xi
t which is received with additive noise by

its out-neighbors. If i ∈ Nj , node j receives the measurement

yjit = xi
t + wji

t , t ≥ 0.

For convenience of modeling, we define wji
t for all (i, j) ∈ E . At time t if no measure-

ment occurs along the edge (i, j), wji
t is simply included as a dummy random variable.

Let {at, t ≥ 0} be a nonnegative step size sequence. When Tt = i, the state of node j
evolves by the rule

xj
t+1 =

{
(1− aκi

t
)xj

t + aκi
t
yjit , i ∈ Nj ,

xj
t , i /∈ Nj ,

t ≥ 0.(8.1)

The above modeling uses t to mark the transitions of the token. There is no need for
the nodes to share slotted time. When a node is during a period neither possessing the
token nor collecting measurements, it remains in an idle status. Neither its counter
nor its state is changed.

For each i ∈ N , define the matrix Bi = (Bi(j, k))j,k≤n by the following rule. If
i /∈ Nj , then Bi(j, k) = 0 for all k. If i ∈ Nj ,

Bi(j, k) =

⎧⎨
⎩
−1, k = j,
1, k = i,
0, all other k.

For a given t ≥ 0, we list all random variables {wji
t , (i, j) ∈ E} into a vector Wt. The

position of wji
t within Wt is determined only by (i, j). Denote Xt = [x1

t , . . . , x
n
t ]

T .
Define aκt = diag(aκ1

t
, . . . , aκn

t
). We write (8.1) in the vector form

Xt+1 = (I + aκtBTt)Xt + aκtDTtWt, t ≥ 0,(8.2)

where the collection of matrices {D1, . . . , Dn} can be defined accordingly and we omit
the details.

We take γ ∈ (1/2, 1] and

at =
1

tγ
, t ≥ ta,

for some ta ≥ 1 and at ∈ [0, 1] for t < ta. Then for each t, I + aκtBTt is a stochastic
matrix.
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We introduce the following assumptions for the rest of this section.
(H1) {Tt, t ≥ 0} is ergodic with stationary distribution π̂ = (π̂1, . . . , π̂n).
(H2) {Wt, t ≥ 0} is a sequence of independent vector random variables of zero

mean and supt E|Wt|2 < ∞.
(H3) {Tt, t ≥ 0} and {Wt, t ≥ 0} are independent, and E|X0|2 < ∞.
Lemma 8.1. Under (H1), there exists a deterministic constant C such that for

each i,

lim sup
t→∞

|κi
t − π̂it|√
t log log t

≤ C.

Proof. Consider a fixed i. We write κi
t = κi

0 +
∑t

s=1 1{Ts=i}, t ≥ 1. Following [3,
section I.14], let

τ1 < τ2 < · · · < τk < · · ·

be an increasing sequence of all values of t ≥ 1 for which Tt = i. Denote ρk = τk+1−τk,
which is called the kth return time. The random variables {ρk, k ≥ 1} are independent
and identically distributed [3]. Since {Tt, t ≥ 0} has finite states and is ergodic,

P (ρk > s) = O(e−αs)(8.3)

for some α > 0. Therefore, the finite moment assumptions in [3, Theorem 5, p. 101]
hold and the proving argument by the dissection formula implies that there exists C
such that

lim sup
t→∞

∣∣∣∑t
s=1 1{Ts=i} −mit

∣∣∣
√
t log log t

≤ C,

where for this ergodic Markov chain we use [3, Theorem 4, p. 90] to determine
mi = π̂i. The lemma follows easily.

Theorem 8.2. Under (H1), the sequence {I+aκtBTt , t ≥ 0} has ergodic backward
products with probability one.

Proof. Consider the consensus algorithm

Yt+1 = (I + aκtBTt)Yt

with the deterministic initial pair (t0, Yt0). Denote Λ = diag(π̂−1
1 , . . . , π̂−1

n ). We have

Yt+1 = (I + atΛBTt)Yt + (aκt − atΛ)BTtYt.

Select t1 ≥ t0 such that I + atΛBi is nonnegative for all i ≤ n and t ≥ t1. By
Theorem 3.1, there exists a set N1 with P (N1) = 0 such that for all ω ∈ Ω\N1,
{I + atΛBTt(ω), t ≥ t1} has ergodic backward products since ∪n

i=1graph(ΛBi) = G is
strongly connected. Denote Yt = [Yt,1, . . . , Yt,n]

T . For some C > 0, we have a prior
upper bound

|BTtYt| ≤ Cmax
j

|Yt0,j |.

By Lemma 8.1, there exists a set N2 with P (N2) = 0 such that for all ω ∈ Ω\N2,
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∣∣∣aκi
t(ω) − atπ̂

−γ
i

∣∣∣ = O

(
1[

t+O(
√
t log log t)

]γ − 1

tγ

)

= O

(√
log log t

tγ+
1
2

)
.

Note that both N1 and N2 are determined by {Tt, t ≥ 0}. Denote Δt = (aκt −
atΛ)BTtYt. For each ω ∈ Ω\(N1 ∪N2), {I + atΛBTt(ω), t ≥ t1} has ergodic backward
products and

∑∞
t=t0

|Δt(ω)| < ∞ since γ ∈ (1/2, 1]. By [9, Lemma B.2], there exists y
such that limt→∞ Yt(ω) = y1n for ω ∈ Ω\(N1 ∪N2). Since (t0, Yt0) can be arbitrarily
selected, by [9, Lemma B.1], {I + aκt(ω)BTt(ω), t ≥ 0} has ergodic backward products
for all ω ∈ Ω\(N1 ∪N2). The theorem follows.

Theorem 8.3. Under (H1)–(H3), the algorithm (8.2) ensures mean square
consensus.

Proof. Since {Tt, t ≥ 0} is independent of {Wt, t ≥ 0}, we have

E|aκtDTtWt|2 ≤ CE|aκt |2 = C

n∑
i=1

Ea2κi
t
.

Fix i and as in the proof of Lemma 8.1, define the sequence {τk, k ≥ 1}. Set τ0 = 0.
Take a large l0 > 1 so that {at, t ≥ τl0} satisfies at =

1
tγ . We have

∞∑
t=0

Ea2κi
t
= E

∞∑
l=0

τl+1−1∑
t=τl

a2κi
t
.

Then for l ≥ l0, by (8.3)

E

τl+1−1∑
t=τl

a2κi
t
≤ E(τl+1 − τl)

(ki0 + l)2γ
≤ C

(ki0 + l)2γ
,

where C > 0 does not depend on l. By (8.3), it is easy to show

E

l0−1∑
l=0

τl+1−1∑
t=τl

a2κi
t
< ∞.

Consequently,
∑∞

t=0 Ea2
κi
t
< ∞ for each i, which implies that

∞∑
t=0

E|aκtDTtWt|2 < ∞.(8.4)

By Theorem 8.2, (8.4), and (H1)–(H3), we apply [9, Theorem 3] to conclude that
(8.2) ensures mean square consensus.

9. Concluding remarks. We have studied ergodicity of backward products of
a class of stochastic matrices with Markovian switches and decreasing step sizes. The
ergodicity theorem is used to prove mean square consensus of stochastic approximation
algorithms. Our proof of the ergodicity theorem assumes that the Markov chain is
ergodic. An interesting question is what happens if the Markov chain is irreducible
but periodic. This scenario seems to be more challenging. The dimension reduction
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technique via the canonical form in section 6 cannot be applied since the matrix
Pπ in this case has several eigenvalues with absolute value equal to one. To handle
this scenario, a promising method is to explore the stochastic averaging approach
[17] by identifying a limiting ordinary differential equation governing the stochastic
approximation algorithm since the irreducible and periodic case still offers good long-
run average properties for the model. We hope to pursue this idea in our future
studies.

Appendix A.
Proof of Lemma 5.1. Associate Pπ = (qlm)l,m≤N with a Markov chain {θ′t, t ≥

0}, whose irreducibility follows from that of {θt, t ≥ 0}. Since Pθ is ergodic, there ex-

ists k0 ≥ 1 such that for all k ≥ k0, the k-step transition probability p
[k]
11 > 0. It implies

that there exists a transition path 1, l1, l2, . . . , lk−1, 1 such that p1l1pl1l2 . . . plk−11 > 0.
For the Markov chain {θ′t, t ≥ 0}, the probability of the path 1, lk−1, . . . , l2, l1, 1 is

q1lk−1
. . . ql2l1ql11 = plk−11(πlk−1

/π1) . . . pl1l2(πl1/πl2)p1l1(π1/πl1) > 0.

The k-step transition probability q
[k]
11 ≥ q1lk−1

. . . ql2l1ql11 > 0 for all k ≥ k0 and so
{θ′t, t ≥ 0} is aperiodic.

Since Pπ is ergodic, it has a unique stationary distribution. For any m ≤ N ,

N∑
l=1

πlqlm =

N∑
l=1

πlπmπ−1
l pml = πm.

This verifies that π = (π1, . . . , πN ) is its stationary distribution. The lemma fol-
lows.

Lemma A.1. Suppose that B is a k × k matrix having zero row sums and non-
negative off-diagonal entries. Denote Q = Ik ⊗ B + B ⊗ Ik. If graph(B) contains a
spanning tree with root k0 ∈ {1, . . . , k}, then graph(Q) contains a spanning tree with
root k0 ∈ {1, . . . , k2}.

Proof. Without loss of generality, we take k0 = 1. We introduce a sufficiently
small τ > 0 to define a stochastic matrix I + τQ corresponding to a discrete time
Markov chain with state space {1, 2, . . . , k2}. Denote B = (bij)i,j≤k. We have the
blockwise representation

I + τQ = (δij(I + τB) + bijτI)i,j≤k .

Partition the states of the Markov chain into the sets S′
i = {(i − 1)k + 1, . . . , ik},

i = 1, . . . , k. The ith diagonal block of I + τQ is I + τB + biiτI. Since graph(B)
contains a spanning tree with root 1, each state of S′

i other than (i−1)k+1 can reach
(i− 1)k + 1 by a sequence of transitions staying within S′

i.
Now it suffices to show that (i − 1)k + 1 can reach state k0 = 1 with positive

probability for i > 1. Consider i = 2, and all other cases are similar. Since graph(B)
contains a spanning tree, there exists a product of the form

b2i1bi1i2 . . . bil1 > 0

and we can ensure that 2, i1, i2, . . . , il, 1 are different integers from {1, 2, . . . , k}. Then
we can show that there is a positive probability for the k2 state Markov chain to make
the sequence of transitions

(2− 1)k + 1 → (i1 − 1)k + 1 → (i2 − 1)k + 1 → . . . → (il − 1)k + 1 → 1,

and the corresponding probability is obtained from I + τQ as τ l+1(b2i1bi1i2 . . .
bil1).
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Proof of Theorem 5.2. Without loss of generality, suppose that node i0 = 1
is the root of G∪,tr. Due to the particular structure of M1 and Lemma 5.1, for each
Sj , any two states can reach one another by a transition path within Sj . Denote the
stochastic matrix Mε = (p̄ij)i,j≤Nn2 for 0 < ε ≤ 1

4β . It suffices to show that from

each state i ∈ {2, . . . , n2}, there exists a transition path of {Υt, t ≥ 0} to give

p̄ii1 p̄i1i2 . . . p̄ir1 > 0.(A.1)

Denote Ql = In ⊗Bl +Bl ⊗ In. Then Mε = M1 + εM2 = (qlm(In2 + εQm))l,m≤N .

Step 1. Let Q =
∑N

l=1 Ql. Since ∪N
k=1Gk has a spanning tree G∪,tr with node

1 being the root, graph(
∑N

l=1 Bl) contains a spanning tree with node 1 ∈ {1, . . . , n}
being its root. So graph(Q) contains a spanning tree with node 1 ∈ {1, . . . , n2}
as its root by Lemma A.1. Therefore, I + ε

NQ is a stochastic matrix of positive
diagonal entries where state 1 is reachable from any state in {2, . . . , n2} with positive

probability. Thus, the first column of (I + ε
NQ)n

2−1 has only positive entries since
each state can transit to state 1 with at most n2 − 1 steps.

Step 2. Consider the product

D := q1j1 (I + εQj1)qj1j2(I + εQj2) . . . qjs1(I + εQ1).

Since (qlm)l,m≤N is irreducible by Lemma 5.1, there exists an integerK0 depending on
(qlm)l,m≤N such that the above product has at most K0 matrix terms, i.e., s+1 ≤ K0,
including each matrix in {Ql, l ≤ N} at least once and satisfying q1j1qj1j2 . . . qjs1 > 0.
For two nonnegative matrices, A1 ≥ A2 means that the inequality holds component-
wise. Note that I+ εQj ≥ I/2 since 0 < ε ≤ 1

4β . Then I+ εQj ≥ I/4+ I/2+(ε/2)Qj.
For some constants C1, C2, we have the estimate

D ≥ C1(I + εQ1) . . . (I + εQN )

≥ C1 [I/4 + I/2 + (ε/2)Q1] . . . [I/4 + I/2 + (ε/2)QN ]

≥ C1

[
4−NI + 4−N+1

N∑
l=1

(I/2 + (ε/2)Ql)

]

≥ C2

(
I +

ε

N
Q
)
.

So

Dn2−1 ≥ Cn2−1
2

(
I +

ε

N
Q
)n2−1

,

where the first column of (I + ε
NQ)n

2−1 has n2 positive entries by Step 1. Thus, we
may find a product of the form

D′ := q1j1 (I + εQj1)qj1j2(I + εQj2) . . . qjs′1(I + εQ1)

so that the first column has all positive entries.
Step 3. Take any 1 ≤ j ≤ n2. We check the (j, 1)th entry of D′. By Step 2,

D′(j, 1) =
∑

t1,t2,...,ts′

q1j1(I + εQj1)(j, t1)qj1j2(I + εQj2)(t1, t2)(A.2)

× . . . qjs′1(I + εQ1)(ts′ , 1) > 0.
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Recall that M(i, j) denotes the (i, j)th entry of a matrix M . By (A.2), there exists a
particular choice (t̂1, t̂2, . . . , t̂s′) such that

q1j1(I + εQj1)(j, t̂1)qj1j2(I + εQj2)(t̂1, t̂2) . . . qjs′1(I + εQ1)(t̂s′ , 1) > 0,

which implies that {Υt, t ≥ 0} has the transition path

j → (j1 − 1)n2 + t̂1 → (j2 − 1)n2 + t̂2 → · · · → (js′ − 1)n2 + t̂s′ → 1

with positive probability. Since j ≤ n2 is arbitrary, (A.1) holds. This completes the
proof.

Lemma A.2. Let {at, t ≥ 1} be a nonnegative sequence converging to zero (not
necessarily satisfying (A1)). Suppose

vt+1 = (I + atM)vt +O(a2t ), t ≥ 1,

where M is a Hurwitz matrix with all its eigenvalues having a real part strictly less
than −σ0 for some σ0 > 0. Suppose that the sequence {bt, t ≥ 1} satisfies 0 < bt → 0,
(I + atM) bt

bt+1
= I + atM0+ o(at) for some Hurwitz matrix M0,

at

bt
= O(1). Then the

following assertions hold:
(i) |vt| = O(bt).
(ii) If at = t−γ, 0 < γ < 1, we have |vt| = O(t−γ). If at = t−1, |vt| = O(t−η),

where η = min{1, σ0}.
Proof. We have

b−1
t+1vt+1 = (I + atM0 + o(at))

(
b−1
t vt

)
+O(at), t ≥ 1.

Denote rt = b−1
t vt. Taking any Q > 0, we solve a unique P > 0 from PM0 +MT

0 P =
−Q. Then

rTt+1Prt+1 = rTt (I + atM0 + o(at))
TP (I + atM0 + o(at))rt +O(a2t )

+ 2rTt (I + atM0 + o(at))
TPO(at),(A.3)

where o(at) and O(at) on the right-hand side of (A.3) are a matrix and a vector,
respectively. Denote dt = rTt Prt. By taking a large t0, we can find δ0 > 0 and C0 > 0
to ensure

dt+1 ≤ (1 − δ0at)dt + C0a
2
t + C0at|rt|, t ≥ t0,

where 1− δ0at > 0. Next, we can find a large C1 to ensure

C0|rt| ≤ δ0
2
dt + C1.

Hence for some C2 > 0,

dt+1 ≤
(
1− δ0

2
at

)
dt + C2at, t ≥ t0.

Consider

ht+1 =

(
1− δ0

2
at

)
ht + C2at, ht0 = dt0 .
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By induction we can show 0 ≤ dt ≤ ht. On the other hand, it is easy to show that
ht − 2C2

δ0
converges to a finite limit (ht0 − 2C2

δ0
)
∏∞

s=t0
(1 − δ0

2 as). Hence dt = O(1).
Part (i) follows.

Case 1: at = t−γ , 0 < γ < 1. We take bt = at. It can be checked that

at
at+1

=
(
1 + t−1

)γ
= 1 + γt−1 + o

(
t−1
)
= 1 + o(at).

For this case M0 = M .
Case 2: at = t−1. We take bt = t−η. Then

(I + atM)
bt

bt+1
= (I + t−1M)

(
1 + ηt−1 +O(t−2)

)
= I + t−1(M + ηI) + o(at).

The matrix M0 = M+ηI is Hurwitz. Moreover, at

bt
= O(1). This completes the proof

of part (ii).

Appendix B.
Proof of Theorem 3.1. Note that (5.4) is obtained from (4.6) by reordering

the Nn2 agents. By Theorem 6.4, S2 holds and hence S1 holds by Lemma 4.3.
Step 1. Consider any given deterministic value Xt0 for (4.1). There exists α ∈ R

such that

lim
t→∞ ξ̄t = α1Nn2 .

Hence

lim
t→∞ ξt = αdiag(π1In2 , . . . , πNIn2)1Nn2 .(B.1)

For V (t) =
∑N

l=1 Vl(t) and Jn = 1
n1n1

T
n , (B.1) implies that limt→∞ V (t) = α1n1

T
n =

αnJn. Next,

E|(In − Jn)Xt|2 = E
[
XT

t (In − Jn)
2Xt

]
= Tr[(In − Jn)V (t)].

It is clear that

lim
t→∞E|Xt − JnXt|2 = 0,

which implies that the difference between the states of any two agents converges to
zero in mean square. By the proving argument in [10, Theorem 9], we can further
show mean square consensus of (4.1).

Step 2. Let {ei, 1 ≤ i ≤ n} be the canonical basis of Rn. We set Xt0 = X
(i)
t0 = ei,

respectively, and by Step 1 we can show that

Ψt+1,t0 := (I + atBθt) . . . (I + at0Bθt0
)

= (I + atBθt) . . . (I + at0Bθt0
)
[
X

(1)
t0 , . . . , X

(n)
t0

]
=
[
X

(1)
t+1, . . . , X

(n)
t+1

]
(B.2)

converges in mean square to a stochastic matrix of identical rows. By the method
in [9, Theorem 3, necessity proof], we may further obtain that Ψt,t0 converges with
probability one to a stochastic matrix of identical rows for the given t0. This completes
the proof of Theorem 3.1.
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